If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64g^2-4=0
a = 64; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·64·(-4)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32}{2*64}=\frac{-32}{128} =-1/4 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32}{2*64}=\frac{32}{128} =1/4 $
| 2b+5=8b-7 | | 10a+5=8a+10 | | 81-p^2=0 | | 3(2-c)=21 | | 5x^2-3x-5x+8=0 | | 0.5x-15=8x | | 48=4(5b-2) | | 2e+7=1 | | 2e=7=1 | | 12f^2-16f=0 | | 2x+6=1/3(x-2) | | t÷3-5=14 | | a÷3+7=11 | | 5(y+7=45 | | 9x+12=4x+72 | | 2x^2-5x-45=0 | | 3(x-3)=5x-4+3(7-3) | | 2u+40=4(u+6) | | 2p+p=24 | | 4^(x+1)=5^(2x) | | 18+(y-14)=-2(y+2) | | 2-(x-1)=14 | | -41,6=8(x-6) | | 6y2-41y-30=0 | | 3a+12=36 | | 4x+17=x+19 | | -4x=1/7 | | 7x–10=2–4x | | 7,9x+8,2-2,5x=-3,6+26,2 | | x+4/5=4+x/4 | | 9*(3x)-4*(2)=28+25x | | z/9+8=1 |